Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Oleg Ya. Borbulevych,^{a,b}* Aleksey V. Semenov,^c Victor A. Vasin^c and Vyachislav V. Razin^d

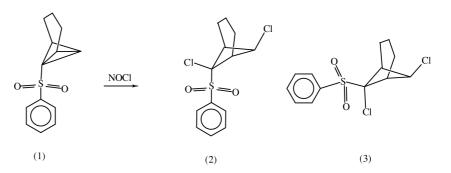
^aDepartment of Chemistry, New Mexico Highlands University, Las Vegas, NM 87701, USA,
^bA. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28 Vavilov St., Moscow 119991, Russian Federation, ^cDepartment of Chemistry, N. P. Ogarev Mordovian State University, 430000 Saransk, Russian Federation, and
^dDepartment of Chemistry, St Petersburg State University, 198904 St. Petersburg, Russian Federation

Correspondence e-mail: oleg@kremlin.nmhu.edu

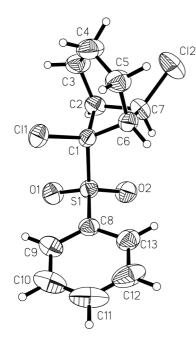
Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.004 Å R factor = 0.033 wR factor = 0.091 Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


O 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

endo-6,syn-7-Dichloro-exo-6-phenylsulfonylbicyclo[3.1.1]heptane


The reaction between 1-(phenylsulfonyl)tricyclo[$4.1.0.0^{2,7}$]heptane, (1), and nitryl chloride in (CH₃)₂O gives rise to formation of a mixture of chlorination products instead of the expected nitro compounds. This mixture consists of the title compound, C₁₃H₁₄Cl₂O₂S, (2), and *exo-6,syn-7*-dichloro-*endo-*6-phenylsulfonylbicyclo[3.1.1]heptane, (3), in the ratio 88:12. The structure of the major product, (2), was established by X-ray analysis. In (2), the phenylsulfonyl group has an axial orientation, and both Cl atoms are in equatorial positions. Received 9 July 2002 Accepted 18 July 2002 Online 25 July 2002

Comment

It is known that addition of nitryl chloride to alkenes is one of the methods for the preparation of aliphatic nitro compounds (Beger, 1967; Zyk *et al.*, 1999). Taking into account the π -like character of the central C–C bond in bicyclobutanes (Hoz, 1987), it is possible to expect addition of nitryl chloride to this bond. This could be a promising way of obtaining substituted nitrocyclobutanes. However, we have found that the reaction between nitryl chloride and one bicyclobutane derivative, (1), in (CH₃)₂O leads to formation of a mixture of chlorination products (2) and (3), in the ratio 88:12, according to ¹H and ¹³C NMR data. The formation of nitro compounds has not been observed. The major product, (2), was isolated by chromatography, crystallized and studied by X-ray diffraction (Fig. 1).

All bond lengths and angles in (2) are close to standard values. The C1–C6 and C2–C7 six-membered rings have sofa conformations. Atoms C1 and C7 deviate from the plane of the remaining atoms of the corresponding rings by -1.059 (3) and 1.033 (3) Å, respectively. The puckering angle for the four-membered ring is 140.9 (1)°. Both Cl atoms are in equatorial positions and the values of the relevant torsion angles, Cl1–C1–C6–C7 and Cl2–C7–C6–C1, are -147.9 (2) and 149.0 (2)°, respectively. The phenylsulfonyl group is situated in an axial position [torsion angle S1–C1–C6–C7 is 85.5 (2)°].

Figure 1

A view of the compound (2). The non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level.

Experimental

Compounds (2) and (3) were obtained by the reaction between the previously reported compound (1) (Vasin *et al.*, 1990) and nitryl chloride. Nitryl chloride was passed, for a period of 30 min, into a solution of (1) (1.17 g) in $(CH_3)_2O$ (20 ml), containing sodium carbonate (0.5 g), with stirring and then cooled to 268 K. The reaction mixture was stirred for 1 h at 273 K. The excess nitryl chloride was removed with nitrogen until the solution became light yellow in colour. The mixture, containing (2) and (3) (88:12), was washed with 5% Na₂CO₃ solution and then with water. The organic phase was dried with calcium chloride and the solvent was evaporated in vacuum to give the mixture of products as a yellow oil (1.49 g). Compound (2) was isolated by column chromatography and crystallized from an acetone–hexane (1:3) mixture [yield 1.02 g (66.9%); m.p. 434–435 K].

Crystal data

```
C_{13}H_{14}Cl_2O_2S
M_r = 305.20
Monoclinic, P2_1/n

a = 6.162 (4) Å

b = 16.710 (11) Å

c = 13.403 (7) Å

\beta = 93.58 (4)°

V = 1377.3 (14) Å<sup>3</sup>

Z = 4

Data collection
```

Siemens P3 diffractometer $\theta/2\theta$ scans 2602 measured reflections 2372 independent reflections 1699 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.044$ $\theta_{\text{max}} = 25.1^{\circ}$

Refinement

Refinement on F^2 H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.033$ $w = 1/[\sigma^2(F_o^2) + (0.0625P)^2]$ $wR(F^2) = 0.091$ where $P = (F_o^2 + 2F_c^2)/3$ S = 0.99 $(\Delta/\sigma)_{max} < 0.001$ 2372 reflections $\Delta\rho_{max} = 0.31$ e Å $^{-3}$ 163 parameters $\Delta\rho_{min} = -0.22$ e Å $^{-3}$

 $D_x = 1.472 \text{ Mg m}^{-3}$

Cell parameters from 24

Square prism, colourless $0.50 \times 0.30 \times 0.30$ mm

Mo $K\alpha$ radiation

reflections

T = 173 (2) K

 $\begin{array}{l} \theta = 10\text{--}11^{\circ} \\ \mu = 0.61 \ \mathrm{mm}^{-1} \end{array}$

 $h = 0 \rightarrow 7$

 $k = 0 \rightarrow 19$

 $l = -15 \rightarrow 15$

2 standard reflections

every 98 reflections

intensity decay: 3.2%

Data collection: P3 (Siemens, 1989); cell refinement: P3; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

- Beger, J. (1967). J. Prakt. Chem. 35, 326-331.
- Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hoz, S. (1987). *The Chemistry of the Cyclopropyl Group*, edited by Z. Rappoport, pp. 1121–1192. New York: Wiley.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1989). P3. Version 4.20PC. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
- Siemens (1991). XDISK. Version 4.20PC. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.

Vasin, V. A., Bolusheva, I. Yu., Chernyaeva, L. V., Tanaseychuk, B. S., Surmina, L. S. & Zefirov, N. S. (1990). *Russ. J. Org. Chem.* 26, 1509–1515.

Zyk, N. V., Bondarenko, O. B., Nesterov, E. E. & Zefirov, N. S. (1999). Russ. J. Org. Chem. 35, 980–987.